Category: Science

Science Sunday 7 August 2022

Science Sunday 7 August 2022

I had a science Sunday; the day revolved around experiencing and learning about science. My friend Claudia inspired us to have a wonderful day. A week ago, she suggested that we might visit The Infinite, a virtual reality (VR) experience centered on life in space. Users experience the project via Oculus VR goggles. I talked with my wife, Mary Ellen, and we thought it would make for a good outing. We met with our friends Claudia and Pat on a sunny morning and journeyed to Tacoma.

On the drive down to Tacoma, we started with a science appetizer. We listened to part of Claudia’s audiobook: “An Immense World: How Animal Senses Reveal the Hidden Realms Around Us” by Ed Yong. The section we listened to was about dogs’ sense of smell, the primary sense for dogs. Since I spend a fair amount of time with my granddog Juniper, it was eye-opening to learn how she views the world. I hadn’t realized that dogs have a separate pathway for air to smell and air to breathe. Different paths let a dog sniff and observe scent many times a second. It was a sound learning snippet on our drive.

When we arrived, we decided we all needed a snack. Pat knew his donuts and remembered a great donut shop, The Original Donut House. After consulting with Google and Siri, we decided the Donut House was defunct. Luckily, Le Duc Donuts was nearby. I fortified myself with a cake donut with coconut sprinkles and green tea.

We went on to The Infinite, a traveling exhibit hosted in the Tacoma Armory. It was interesting to have a cutting-edge technology exhibit hosted in a building constructed in 1908. We went through a brief introduction and then entered an area where we learned how to get the most out of our Oculus VR sets. I found that I needed to have my glasses on to see effectively. The VR set allowed my glasses to fit in, it was slightly uncomfortable, but I adapted quickly.

We got a minute to adjust to the VR set. In our view, our group of four appeared as gold avatars, other visitors as blue avatars, and exhibit staff as green avatars. White dots delineated the floor below us. I found I walked cautiously. We entered the exhibit, and I was awestruck; I was floating in orbit around the Earth with the heavens above. Wow.

In a minute, the outline of the International Space Station (ISS) appeared. I slowly walked towards it and entered.

The station pictured from the SpaceX Crew Dragon, 2021 Source: NASA

Floating around us were orbs; I touched my first orb. The astronaut explained what she was doing in a science experiment on the ISS. I went on to another orb and another. A favorite was the astronaut and cosmonauts preparing and eating appetizers; I was next to the table with them. In another experience, an astronaut was floating toward me. I could look up into another node of the station. I was well above the floor when I looked down. I floated gravity free on orbit around Earth.

Four chapters of seven minutes divide the Infinite experience: Adaptation, Progress, Unity, and Expansion. In between each chapter is a transition of a few minutes. You leave the confines of the station and float above the Earth. There’s some ethereal music coming in via your headphones. The ISS appears in front of you, and you enter the next chapter. I saw the Earth from the cupola, a domed viewing port added to let astronauts see the Earth through large viewing windows. I also floated outside the station; nearby, a SpaceX Crew Dragon capsule was docked, and the solar panels towered above me; what a view.

Most memorable were the crew interactions, the human element, and emotion. There was joy when a crew floated in; sadness when a crew departed. The station crews are “space people,” a term I learned from MIT researcher Ariel Ekblaw. [1]

Near the end, I had something upsetting happen. A message flashed that said a staff member wanted to talk with me. We connected after I lifted my headset. My VR set battery was 16%; I needed to change headsets. I struggled awkwardly to get the headset off; the headset captured my glasses. With my headset off, I was catapulted back to reality. There were a bunch of people standing in a warehouse. It was disconcerting. I asked to leave; I felt I would not reengage with the VR experience. The staff member guided me to an exit. I did talk with a manager and explained my concern; getting a partially charged headset that did not compute to me.

I think we just visited a section of the Metaverse; the experience was terrific despite the glitch. The exhibit is complex; taking it all in on a 35-minute visit is impossible. The good news is that I will get to come back and do the show again. In preparation for my next time, I bought a book about the exhibit: The Infinite, by Phoebe Greenberg and nine co-authors.

After our time in virtual reality, we needed lunch. We picked the Red Elm cafe in the Hilltop neighborhood of Tacoma. It was some great food; I had a vegan breakfast waffle with hashbrowns and a soy latte. Mary Ellen enjoyed a chicken avocado sandwich with a cold latte. The food was delicious, and the staff was friendly and attentive. We met Henry; he teaches crochet lessons. Some of his knitted art was on the wall of the cafe.

On our way home, Claudia gave us another recommendation – to see the documentary AlphaGo. I knew the general story about a Google DeepMind team building an artificial intelligence (AI) program that defeated the world’s best Go player. We started the documentary; I thought we might spend 15 minutes viewing this 90-minute film. Wrong. The film captivated us. I was intrigued by the development of neural networks; I had colleagues who worked in this field in the early 1990s. The struggles of Fan Hui and Lee Sedol against the AlphaGo program was mesmerizing. Sedol learned new insights from AlphaGo; perhaps humans and AIs will team up to reach new levels of learning in the game of Go.

Well, that’s a summary of science Sunday. I woke up Monday morning with the thought of capturing a wonderful day with Mary Ellen, Claudia, and Pat. I found it took me longer than I thought to capture my thoughts in writing; about 2.5 hours from start to finish.

My writing was aided and abetted by visits from Gus the cat, who decided I needed to take an occasional break.

[1] Ariel Ekblaw: Space Colonization and Self-Assembling Space Megastructures | Lex Fridman Podcast #271 One of my favorite podcasts; I always learn something when Lex interviews people.

Hydrogen Part 1 Today

Bill Gates wrote an insightful new blog post: “To cut emissions, use this Swiss Army Knife.” [1] He explains why hydrogen is essential now, how we might produce it without carbon dioxide, and why it may be more critical in our future. It’s worthwhile reading. My friend Christopher recently talked to me about future uses of hydrogen. Christopher and Bill Gates are both on to a good idea; they triggered me to start thinking more about hydrogen.

When I think about hydrogen, three things spring to mind: Lots of energy, easily made from water and electricity, and very dangerous. These were lessons I learned more than fifty years ago.

The energy available from hydrogen propelled the Apollo moon program. The Saturn V second and third-stage rockets used liquid hydrogen fuel; that was a lot of liquid hydrogen! I found that hydrogen was easy to make in my high school chemistry lab using electrolysis. The collected hydrogen would burn with a bit of pop.

I had seen proof of the dangers of hydrogen. A friend owned a melted piece of structural aluminum from the Hindenburg; this hydrogen-filled dirigible had burned while mooring in 1937. A more memorable use: the hydrogen-oxygen fuel cells on Apollo 13. The explosion of one of these fuel cells almost killed the crew and led to a remarkable space rescue effort. 

After reading Bill’s article and talking with my friend about the future of hydrogen, I decided it was time to upgrade my knowledge of hydrogen. I decided upon a four-part plan: How do we make hydrogen today? What are the current applications of hydrogen? How might we use hydrogen in the future? Finally, how would we produce hydrogen in the future? I divided this blog into two. The first part covers hydrogen production and application today; the second will address the future. My goal was to teach myself a bit more about hydrogen, and hopefully, it will interest readers.

So, how do we make industrial quantities of hydrogen today? I found an explanation from the Department of Energy of one method of making hydrogen. [2] Hydrogen is primarily made via a Steam-Methane Reforming reaction (SMR). Methane gas reacts with steam and heat to produce hydrogen and carbon monoxide:
CH4 + H2O (+ heat) → CO + 3H2
The remaining carbon monoxide reacts with steam in the Water-gas Shift (WGS) reaction. It produces more hydrogen and carbon dioxide:
CO + H2O → CO2 + H2 (+ heat)

Another method used to produce hydrogen is coal gasification. [3] In this process, oxygen combusts carbon in coal to produce carbon dioxide:
C + O2 → CO2 ( + heat)
The CO2 and heat react (gasification) to produce carbon monoxide:
C + CO2 (+ heat) → 2CO
The Water-gas Shift (WGS) reaction produces hydrogen and carbon dioxide:
CO + H2O → CO2 + H2 (+ heat)

In 2020, the world produced 70 million tons of hydrogen. According to the US Department of Energy, 76% of global hydrogen comes from the Steam-methane reforming reaction, 22% more from coal gasification, and 2% from electrolysis. [4]

Why change these processes? Bill Gates said that industrial hydrogen manufacture produces 1.6% of CO2 emissions. The  International Energy Agency (IEA) estimated that hydrogen generation would generate about 900 million tons of carbon dioxide in 2020. [5] Hydrogen produced from uncontrolled fossil fuels is referred to as “grey” hydrogen, as defined by researchers at Columbia University. [6]

I was surprised that petroleum refining is today’s most important use of hydrogen. The hydro-desulfurization reaction lowers the sulfur content of fossil fuels, thus using more than half the world’s hydrogen. The manufacture of ammonium nitrate fertilizer via the Haber process uses lots of hydrogen. Metal refining, chemicals  (acid, methanol, hydrogen peroxide), and hydrogenated oil food production also use hydrogen. [7]


[1] Gates, Bill. THE OTHER HYDRO POWER: To cut emissions, use this Swiss Army Knife. GatesNotes The Blog of Bill Gates, 21 June 2022.  Accessed 22 June 2022.

[2] US Department of Energy.  Hydrogen Production: Natural Gas Reforming. Accessed 22 June 2022. 

[3] Allen, Jessica. Explainer: how do we make hydrogen from coal, and is it really a clean fuel?, The Conversation website, 13 April 2018.  Accessed 25 June 2022.  

[4] US Department of Energy. Hydrogen Strategy, July, 2020. Accessed 22 June 2022.

[5] Bermudez, Jose M.; Hannula, Ikulla et. al. Hydrogen – More efforts needed. International Energy Agency, November, 2021. Accessed 25 June 2022. 

[6] Ochu, Emeka; Braverman, Sarah; Smith, Griffin; and Friedman, Julio. Hydrogen Fact Sheet: Production of Low-Carbon Hydrogen. Columbia University,  17 June 2021. Accessed 22 June 2022.

[7] Brown, Andy. Uses of Hydrogen in Industry. The Chemical Engineer, 16 July 2019. Accessed 25 June 2022. 

The Neuroscience of the Blues

The Neuroscience of the Blues

A few nights ago, I enjoyed blues guitarist Dana Hubbard’s performance at a great house concert hosted by Mike and Wendy. Might I suggest listening and watching Dana playing on YouTube before going on with my writing? Music’s dynamic, not static – pay attention to Dana’s movements. Of course, the hands interact with the guitar. But, his entire body is involved. He’s also singing and speaking – which are two different actions. A lot is going on, and I will try to explain some neuroscience related to blues guitar.

So, I’ve got a front-row seat by happenstance. Mike announced that there was a great seat in front. We are all reluctant to sit in the front row, just like in elementary school! Mike called a few of us by name, and up we went to the best seat in the house. Dana is about five feet away. The first set is excellent, with some original, creative music. Dana has more than a trace of Robert Johnson in his music. So glad to be hearing some live music again.

I talked to Dana during the break; I got a couple of CDs. This whole evening has been great. Saw old friends from years ago. Some stories were joyful, others sad. A lot was swirling through my head as I sat down for the second set. I started thinking about what was going on in Dana’s brain to produce this wonderful music? What is the neuroscience of the blues? I was in a trance; someone asked me if I was falling asleep. I was in the opposite of a sleep state, trying to recall what was going on in Dana’s brain to produce this music. Let me step you through some of the details. It’s been a few years since I studied this; I’m sure I will make a few mistakes, but I will try to give you some idea of what’s involved in playing the blues guitar.

Here’s an image of Dana playing the guitar. I notice Dana’s complicated finger and hand movements; the complex dance between human and guitar. A neuroscientist calls this volitional (voluntary) motor control. Dana also was singing and speaking – a whole different set of neural processes. As he plays and sings, Dana listens and applies feedback. Dana’s using his auditory pathway to hear the music, and so is his audience. Finally, notice the smile on Dana’s face – emotions are also in play.

I’m self-taught in neuroscience. One of my favorite classes was Medical Neuroscience, taught by Professor Leonard White of Duke University. Here’s my textbook and my black notebook from the class. I spent four good months in 2013 studying Professor White’s lectures, the text, and my research notes. My notes attempt to capture a systems engineering view of the brain.

So, let me see what I can explain about the neuroscience of the blues. First, let’s consider how Dana plays the guitar – motor control. Check out the block diagram on the upper page of my notebook. Dana’s motor cortex is planning, initiating, and directing his hands and fingers to play the music. The Basal Ganglia is an input that helps figure out when to start moves. By the way, the Basal Ganglia is also a vital component of emotional response. See that sly smile on Dana’s face: Basal Ganglia feeding another part of the motor cortex, another set of separate but linked movements. The pathways are descending via efferent motor neurons; this means the information flow is from the brain to the body via nerve cells that control skeletal muscles. The Cerebellum provides a coordinated sense of movement; it feeds into the motor neuron network. Meanwhile, Dana’s brainstem keeps Dana’s posture upright on the stool.

There’s another essential piece to Dana’s music-making: Sensory-Motor Integration. Have a look at the diagram on the bottom page. We can start at the green box on the lower left; Internal & External Environment. Dana must hear what he’s playing; he wore a single earbud to listen to what he’s playing. Maybe his guitar is out of tune; perhaps he needs to adjust the equalizer, these call for some form of adapting to the external environment. Similarly, maybe Dana feels chilly; he would sense a change in his internal environment.

Dana’s senses pick up this information and send it up via ascending paths using afferent sensory neurons. The sensory info feeds to various areas of his brain. Sensory data is then coordinated and integrated across the brain. After all the information is combined, the motor components take action. For example, if his guitar needs tuning, then somatic motor control will fire various skeletal muscles. As a result, Dana adjusts his guitar. Dana’s body may make automatic visceral adjustments if the room is chilly, such as constricting blood vessels near the skin.

Let’s get back to volitional control; in other words, movements that we will our body to make. These movements arise in the primary motor cortex. A neuroscientist would express the activity of Dana’s fingers playing the guitar as fine control of his distal extremities. On the left side of the diagram, playing guitar stems from the primary motor cortex down the lateral corticospinal tract to motor neurons that control the fingers. Meanwhile, the medial pathway governs movements such as sitting. On the other side of the diagram, different types of activity are nonvolitional, for example, Dana’s genuine smile. Guess what; a whole separate pathway. I’ll skip those details except to say that these two sides get linked together in the little purple box – the Brainstem Reticular formation. Some speculate this is the area where consciousness arises. For entertainment, ask two neuroscientists to explain consciousness; sit back and watch the sparks fly.

Now, you might wonder what a cerebral cortex is? The word cortex derives from the Latin word for an outer layer, such as the bark of a tree. The outer layer folds up in our brain. It would be like a thin, medium-size pizza crust if we spread it out on a table. The cerebral cortex contains most of our higher-order functions that compose conscious thinking: movement, speech, singing, and vision come to mind (yes, the pun was intentional). In the upper left corner of the diagram, you can see a cartoon of the motor cortex. The motor cortex is a strip of the brain about the dimensions of your finger. The upper extremity (arm) is in the middle of the motor cortex. The motor cortex is contralateral; the left motor cortex controls the right side of the body. Since Dana uses both hands to play the guitar, he’s using both sides (hemispheres) of his brain to play.

Another critical point in the diagram, a single neuron can cause multiple muscles in the arm to either flex or relax (extend). Translated to neuro speak: A single action potential (AP) in a corticospinal neuron activates four muscles in a forelimb. We learn all this complex behavior over time. We can acquire new motor skills because our brain is dynamic, flexible, and plastic.

I covered just a few highlights of what’s happening when Dana plays the blues on this guitar. I want to discuss how the audience (and Dana) listen and react to the blues in a future piece. Meanwhile, I need to get up and use my motor cortex to get some exercise!

A Brief review of Underestimated : an autism miracle by J. B. Handley

The heart of this book is the question: How non-speaking people with autism can communicate.The authors detail a potential breakthrough method – Spelling to Communicate (S2C).  A brief summary of S2C:a  non-speaking person with autism answers questions by pointing to one letter at a time on a letterboard held by an assistant. The reported results are amazing; non-speaking people with autism are able to communicate complex thoughts for the first time. The authors of the book are a father-son pair, the son Jamison is a non-speaker. It touched me how deeply the entire family wanted the best for Jamison. Reading the book, I realized that if my son couldn’t speak, I would certainly embrace S2C. 

A major  issue with S2C is that it doesn’t land within the domain of  current speech therapy science. The best science I can find to support S2C (cited in the book) is by V.K. Jaswal and colleagues at the University of Virginia. It would be great to see some additional supporting papers using other measurement techniques in the neuroscience toolbox. If the results can be substantiated, S2C would be a paradigm shift for non-speaking people with autism. Below is a reference to the paper in question, I would urge those who are interested in the science of S2C to read it.

Jaswal, V.K., Wayne, A. & Golino, H. Eye-tracking reveals agency in assisted autistic communicationSci Rep 10, 7882 (2020).

I searched for a paper that would provide a factual counterbalance. This essay by Stuart Vyse provided some cogent discussion of additional experiments that would affirm or deny the usefulness of S2C.

Vyse, S. Of Eye Movements and Autism: The Latest Chapter in a Continuing Controversy.

 I’m an engineer but I have spent a few years educating myself in neuroscience. In particular, I have studied advances in brain-computer research. Locked-in quadriplegic patients regain some movement capabilities using brain-computer systems. The best suggestion I have to validate S2C is to develop a system that takes the human assistant out of the loop after some training.